Ticker

6/recent/ticker-posts

Header Ads Widget

Responsive Advertisement

Theoretical Calculation of Absolute Radii of Atoms and Ions. Part 2. The Ionic Radii

Abstract
The theoretical method of determination of absolute atomic size, discussed in Int. J. Mol. Sci. 2002, 3, 87-113, is exploited to calculate absolute radii of the ions whose experimental radii are published by Shanon. The computed radii are found to reproduce the expected periodic variation of size in periods and in groups and nicely reproduce the d-block and f-block contractions in the respective series. It is pointed out that experimental radii of d and f block transition metal ions make erroneous and misleading representation of the size behaviour of the respective series. A detailed comparative study of the crystal radii vis-รƒฦ’ร‚ -vis the theoretical radii is reported. A rationale of the double hump curve of the experimental radii of 3 d-block transition metal ions is put forward in terms of the crystal field theory and Jahn-Teller distortion. The theoretical radii are exploited to calculate the diamagnetic susceptibility, polarizability and chemical hardness of the ions and compared with available experimental data. The fact of good agreement between the experimental and computed global hardness of ions and correct demonstration of d-block and f-block contraction by the computed radii are used as benchmark to test the validity of the values of the computed theoretical radii of the ions as their representative sizes. It is concluded that the theoretically computed radii of ions are visualizable size representation of ions and can be used as their absolute radii at the respective oxidation states.

To download the article click on the link below:

https://www.researchgate.net/publication/26548238_Theoretical_Calculation_of_Absolute_Radii_of_Atoms_and_Ions_Part_2_The_Ionic_Radii


or

http://www.mdpi.com/1422-0067/4/6/379/htm





Post a Comment

0 Comments